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Abstract

In this paper we use a real options approach to value pilot project investments that help reduce
idiosyncratic uncertainty with respect to the final costs of a project. We develop a general one period
investment model and, using standard financial engineering techniques, are able to find the value of these
investment opportunities and the corresponding optimal investment level. In our setting, both tradable
market uncertainty and idiosyncratic technical uncertainty affect the value of the project, with the latter
being driven by the amount invested in the pilot stage. Learning is modeled using a proportionality
assumption between investment in the development stage and resolution of technical uncertainty. The
coefficient that governs this proportionality relation will play a key role in our model, as it defines whether
there are decreasing or increasing marginal returns to investment in the development stage and to what
extent. Interesting economic implications concerning the effects of this learning coefficient and other
parameters of interest in the optimal investment decision are obtained. The robustness of our results is
also analyzed. Finally, applications of our framework to investment decisions in various industries and
across the supply chain of firms are discussed.

∗Dept. of Management Science and Engineering, Terman Building Room 477. Email:sadowsky@stanford.edu. This work
was done under the supervision of Prof. Blake Johnson from Stanford University. The author also wishes to thank James
Primbs, John Weyant, Eymen Errais, as well as Scott Mathews from the Boeing Corporation for helpful discussions

1



1 Introduction

For a firm, optimal allocation of resources during the development stage of a product is a complex task, more

so in the presence of significant market uncertainty, as the lag of these investments with respect to the future

cash flows received in case of successful completion is considerable. In technologically intensive industries

the problem is even more daunting, as the final product could require more than a few different technological

systems working together and the total funding devoted to R&D must be split between different technologies.

Technical learning and the possibility of launching a profitable commercial stage after the development

stage is completed, are the main sources of value of these R&D investment opportunities. We will define

technical learning in the most general way as the reduction of uncertainty with respect to the efficient

technological frontier of a firm. Generally, this source of risk is idiosyncratic, i.e., specific to the firm or the

particular project under consideration. Keeping market prices constant, a positive evolution of this technical

uncertainty will increase the final output/input ratio of the firm, thus, increasing the value of the project

under consideration and viceversa. However, market factors are not constant. In fact, they are significant

drivers of the value of most projects. These market factors evolve through time, making learning more or

less valuable in different scenarios. Unlike technical uncertainty, which can be reduced by investing in the

development stage of a product, market uncertainty is mostly beyond the control of the firm and, at least

somewhat correlated with economic fundamentals.

The purpose of our work is to give a simple Real Options based framework to value investment opportunities

that have two main purposes: they make feasible the launch of the commercial stage of a project, giving

the firm the possibility of future payoffs, and they allow for additional learning about these future payoffs

before a final decision on this launch is made and significant irreversible investments are undertaken. This

is done in an environment where both, systematic market uncertainty and idiosyncratic technical risk affect

the value of the project’s commercial stage. The latter is driven by the investment decisions taken by the

firm in the development stage of the project.

The R&D investment literature started with Lucas (1971). He solved for the optimal allocation of effort

throughout the development stage of the project in a general case where effort is controllable and time to

completion is random. However, there is no modeling of learning and all uncertainty is private.

The next major work in the subject was done by Roberts and Weitzman (1981). In their model, the firm is

continuously learning about they payoffs of a project as it invests through time . Based on a proportionality

assumption about the learning process, they derived a diffusion process that the expected benefits of a

project should follow. They do not take into account market uncertainty in their model. Consequently their



results will be only applicable for a small set of projects where market uncertainty is negligible and could be

ignored.

Grossman and Shapiro (1986) provided a few interesting models of R&D programs under certainty and

uncertainty in progress and time to completion. Again, the market dimension is absent and in their model

of uncertainty in time to completion, the distribution of the time to completion is independent of actions

taken by the firm and completely exogenous to the model.

McDonald and Siegel (1986) analyzed the value of waiting to invest. Their setting is useful when time to build

is negligible when the development stage of the project has already been completed and a firm is considering

whether to launch the commercial stage of a project or wait for more favorable market conditions.

Majid and Pyndick (1987) developed a continuous investment and time to build model. In their setting

the only role of investment is to bring a project closer to completion. The learning dimension is excluded.

Pyndick (1993) is probably the first to take into account market and technical uncertainty into a coherent

framework. In this model revenues are fixed and costs are driven by market and technical uncertainty.

However, his model does not make any distinction between the development and commercial stages of a

project. This distinction turns out to be relevant as, in many industries, most of the learning takes place in

the former.

More specific work, focused on particular industries or project characteristics, has followed. Messica and

David (2000) analyzed the effect of the life cycle of revenues of the future project on the optimal investment

allocation in the development stage. Cortazar et al. (2001) focused on optimal exploration investments in

a mine under price and geological uncertainty. Bach and Paxson (2001) modeled investment in the drug

development process. Schwarz and Soraya (2003), using a model similar to that of Pyndick (1993), analyzed

investment in the IT industry both in acquisition and development projects.

Based on a few simplifying assumptions, we will set up a one period investment model to value R&D

investment opportunities in a context where both market and technical uncertainty are present. Technical

learning will be modeled with a proportionality assumption for the relation between pilot investments and

technical uncertainty reduction similar to that of Roberts and Weitzman. Since we will consider scenarios

where market uncertainty is significant, our work will be based on a real options approach. This calls for a

somewhat abstract but useful distinction between the value of claims to revenues and costs in the commercial

stage, which will take the role of our underlying assets, and the value of the investment opportunity in the

development stage, which will function as our option. Throughout our work we will use indistinctly the terms

pilot, R&D or development stage for the time period before the decision to launch the full scale project was
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made. For the stage that follows, we will use interchangeably the terms commercial or production stage.

Our approach will be to account separately for technical and market uncertainty in our underlying assets.

Spanning assumptions will be made on the market uncertainty of the project and technical uncertainty will

be considered diversifiable and discounted at the risk free rate. Based on these assumptions, traditional

financial engineering techniques will be appropriately applied to our setting, allowing us to obtain closed

form solutions and comparative statics that will yield novel economic insights about the problem in question.

Nevertheless, it is important to emphasize that our results can not be taken as strict non arbitrage prices of

financial options but as plausible economic valuations of these real investment opportunities. Later on, most

of our simplifying assumptions will be relaxed and the effects of this on our main results will be analyzed.

However, in this paper we will choose to focus only on the one period investment assumption leaving a

general continuous investment setting for future work.

The paper is structured as follows. Section 2 states our main assumptions and sets up the model. Section 3

values the opportunity to invest at a fixed investment level (what we call the second stage of the problem)

and then solves for the optimal investment level and value of the investment opportunity. Section 4 has

the main comparative statics and develops the economic insights implied by them. Section 5 analyzes the

robustness of our results by relaxing some of the main assumptions and sketching the effects of these changes

on the results obtained. Section 6 offers additional practical insight by linking the framework of this paper

to common investment situations present in different industries and across the supply chain. Section 7

concludes.

2 The Model

In this section we provide the structure of the model that will be used throughout the paper. Our main

assumptions will be stated and justified. They will provide us with a simple one period setting and closed

form solutions for the value of our investment opportunity.

2.1 General Structure of the Model

The following assumptions will be used:

Assumption 1 : The commercial stage of a project can only be launched after the pilot or development stage

has been completed. Let I be the total investment made on the pilot stage. For the pilot stage to be

completed we need I ∈ [I, I].

We can think of I as a feasibility bound. Below this level, it is not possible to go ahead with the commercial
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stage, since the minimum resources needed to guarantee an appropriate implementation, both on the technical

and administrative side, have not been committed. On the other hand, I could be thought of as a budgetary

bound. However, we could also think of it as an economic bound if, past this investment level, there is

no gain from any additional expenditure made in the development stage. This is consistent with economic

assumptions about decreasing returns of factors of production.

Assumption 2 : Regardless of the level of investment I, the pilot or development stage takes a fixed time for

completion which we will label T.

Assumption 3 At time 0, the decision of whether to invest or not in the pilot project is made. In the first

case, the level of resources devoted to the pilot, I must also be decided. At time T, the decision to move

ahead with the commercial stage or abandon the project must be also be taken.

These first assumptions, although somewhat restrictive, allow us to simplify the problem so that we can focus

only on the one period tradeoff between the benefits of pilot investment, which are given by the increase in

the value of the investment opportunity resulting from a higher resolution of technical uncertainty, and its

cost. In Section 5, we consider the effect of relaxing these and some other assumptions that follow on our

main results and conclusions. Nevertheless, throughout this paper, we restrict ourselves to the one period

investment framework imposed by Assumption 3. By restricting ourselves to work on a one shot investment

problem we lose the flexibility present in many real investment situations. However, this formulation allows

us to obtain closed form solutions and comparative statics, and with them many important economic insights

that would have been very difficult to obtain under a continuous or N-stage investment setting. Working

in this direction, Errais and Sadowsky (2005) use Neuro Dynamic Programming techniques to value an N-

stage pilot project in an infinite horizon setting in which investment drives the volatility of the processes

followed by the underlying assets. However, the need to resort to approximate numerical solutions for the

corresponding Bellman equation limits the extent to which we can learn about many of the issues that will

be thoroughly analyzed in Section 4 of this paper.

2.2 Assumptions about the Pilot Stage and Stochastic Processes

The pilot stage will help reduce technical uncertainty with respect to the final costs of the project. In our

setting, the revenues of the project will be only driven by market factors. The costs of the project will, in

turn, be driven by both market and technical uncertainty. This is a reasonable assumption for most technical

R&D programs. However, we will see that our setting will also accommodate scenarios where the revenues

of the project have also a significant idiosyncratic component. For example, a firm may want to decide the

optimal funding that should be given to a marketing pilot project that will enhance its understanding of the
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different factors driving demand for a new product.

We could think of the total costs as the product of a price of inputs factor times an efficiency of inputs factor.

Market considerations like the growth rate of the economy, the stock market, the unemployment level and

other economic fundamentals will drive the price of inputs together with the entire revenue stream of the

commercial project. The efficiency of inputs factor will be driven by idiosyncratic technical uncertainty, and

it is here where the learning resulting from investment in the pilot stage raises the value of the option to

invest.

Let St be the value of a claim to all revenues of the commercial stage based on the information available

at time t. Similarly, Kt, will be the value of a claim to all costs corresponding to the commercial stage,

implementation and recurrent costs. We could think of St and Kt as the Net Present Value (NPV) of these

cash flow streams assessed at time t. In addition, St and Kt will be the values of these claims, assuming that

the commercial stage could be launched at the current time t. The information set upon which we condition

includes all market and technical factors that influence the values of these claims. The assumption regarding

the feasibility of the launch of the commercial stage is necessary, as it will allow us to formulate our problem

in a Real Options framework by separating completely our underlying assets (St and Kt) and the option to

invest. Even though at any time before completion St and Kt are not feasible claims, they will be so once

the pilot stage is completed. Thus, this somewhat artificial definition, will not affect the results obtained.

Although some papers in the Real Options literature choose to use more basic variables as their underlying

assets, such as output prices or demand, we have chosen to work with the NPVs of revenues and costs in

a more general scenario, abstracting away from any specific properties of the project under consideration.

Moreover, most pilot projects are inherently complex and their values are related to a few fundamental

variables at the same time. Tracing their value back to these more fundamental variables may not be

feasible in practice, or if so, may greatly affect the tractability of our setting.

We have chosen to model revenues and costs separately for two different reasons. First, market or technical

uncertainty may not affect both revenues and costs, or if it does, it may not do so in the same way. For

instance, in our setting, both types of uncertainty are relevant to costs, but revenues are only affected by

market uncertainty. The second reason is that it is perfectly possible that the underlying commercial stage

have a negative value, specially when it is technological and capital intensive. Keeping costs and revenues

separately allows us to use log normality processes for each of them without restricting the value of the

project to be positive all points in time.

Let the risk free rate in the economy be denoted by rf . The following assumptions will also be made:
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Assumption 4 : St will follow a log normal process that is completely correlated with that of a tradable asset

in the market. For simplicity, we will assume that this tradable asset is St itself and that it follows the

following diffusion process:

dSt = αsStdt + σsStdw1 (1)

Moreover, St accrues dividends at rate δs. This dividend rate δs has both a financial and economic inter-

pretation. In strictly financial terms, it could be thought of as the yearly cash inflow that the project will

currently generate once it were properly functioning. In this view δs is completely analogous to a dividend

yield accrued by holding a stock. However, in a competitive market environment, a delay in launching a new

product may have more undesirable consequences to a firm. Indeed, potential revenues lost due to market

share gained by competitors, who may strike first while the firm is waiting for more favorable conditions,

may be even more significant than the yearly revenue forgone. In settings like this, the economic opportunity

cost of waiting should significantly increase the dividend yield δs.

Assuming St is tradable defines a uniquely market price of risk for w1, which we will label λ1. It is given by

λ1 = (αs + δs − rf )/σs. The market price of risk is nothing else that the additional return in excess of the

risk free rate that an investor requires per unit of volatility exposure to that particular source of risk.

This assumption is reasonable for big projects in industries where price and demand are very sensitive to

economic fundamentals. This, in turn, depends among other factors on the nature of the industry, the

product or service provided, and the dynamics of market competition. For example, few would argue that

the revenues and variable costs resulting from investing in a pilot project to develop a new luxury car model

are not correlated with the current or expected future state of the economy, or with the stock prices of the

producing firm or of car manufacturing companies in general. In fact, the stock price of the firm already

incorporates the assessment of the market about the success of this new car model. We have chosen a log

normal process, since it is the most general and accepted way of modeling tradable market prices and many

economic fundamentals. Nevertheless, depending on the time horizon, market characteristics or life cycle of

revenues of the specific project under consideration, alternative processes that capture features like mean

reversion and seasonality may need to be considered.

Assumption 5 : Kt will follow a log normal process that is driven by two Brownian Motions. The first one

represents market uncertainty and is completely correlated with a tradable asset spanned by the market.

Let us denote this tradable asset by ct and assume it follows:
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dct = αcctdt + σcctdw2 (2)

with a dividend rate of δc. w2 is a Brownian motion representing the market uncertainty of costs. Moreover,

the correlation between the costs market uncertainty with the revenues market uncertainty is ρ, i.e., <

dw1, dw2 >= ρdt. This uniquely specifies the market price of risk for w2, which we will label λ2 and it is

equal to: λ2 = (αc + δc − rf )/σc.

A significant fraction of the costs of a project, specially in capital intensive industries, is driven by prices of

materials and labor costs, which are, at worst, somewhat correlated with economic fundamentals. Hence, the

assumption that cost market uncertainty is tradable is justified by the same arguments given in the previous

assumption.

The second source of risk relevant for costs is a Brownian motion, which we will denote by zt, representing

technical uncertainty that is private to the firm. The technical volatility coefficient will depend on the level

of investment made in the pilot stage (I) in a way that we will make explicit shortly.

Thus, we assume that Kt follows the following process:

dKt = αkKtdt + σkKtdw2 + σ̂z(I)Ktdz (3)

where we have made explicit the dependence of the technical volatility on the level of investment in the

development stage. The expected growth rate of costs, αk, is known by the firm and depends partly on the

technological characteristics of the project and partly on the expected growth rate of relevant market factors

such as labor costs or prices of inputs. In general, αk could be dependent on the level of investment just as

the technical volatility σ̂z(I) does. For ease of exposition, and since the main focus of our paper is to value

of learning we choose to work with a constant growth rate in our main framework. In Section 5 we will

consider relaxing these assumption to include an investment dependent growth rate. As we will see there

this relaxation results in an additional effect on the value of the option to invest through changes in the

effective risk neutral drift rate for costs. Unless these market factors are expected to growth significantly αk

will generally be negative as this technological investments are expected to increase efficiency, driving down

costs on average.

Unlike market uncertainty, which is driven by the Brownian w1 and w2, technical risk is not spanned or

tradable in the market. Thus, the market price of risk for technical uncertainty, λz, is not completely

defined by non arbitrage considerations. As a consequence of the presence of technical uncertainty, we are

left to work in a incomplete markets scenario and we need to resort to additional risk considerations in order
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to find a unique economic value for this investment opportunity. This is what Assumption 7 will do.

In the following assumption we will give some structure to the technical uncertainty and to σ̂z, its diffusion

term.

Assumption 6 : Technical uncertainty resolved during the pilot stage increases with the level of investment.

Hence, the maximum amount of technical uncertainty that could be reduced in the pilot stage, which we will

call σz, corresponds to the maximum level of investment I. Moreover, there is a proportionality relationship

between investment and uncertainty reduction given by:

σ̂z(I) = σz

(
I

I

)β

(4)

This is a specific case of having σ̂z(I) = g(I) with g(I) strictly increasing and continuous, g(I) = σZ and

g(0) = 0. However, this proportional specification will give us, through the non negative parameter β enough

flexibility to model different forms of evolution of learning.

The parameter β characterizes the marginal returns of pilot investment (where return in this context could

be thought of as uncertainty reduction) and will be crucial for our problem. β has a natural interpretation in

this context. 0 < β < 1 corresponds to decreasing returns to investment. If we invest a certain fraction of the

maximum possible investment we will have resolved a higher fraction of the maximum technical uncertainty

that could be resolved. This implies that the first dollar spent in the pilot stage is more productive in reducing

technical uncertainty than the second one, which in turn is more productive than the third, and so on. Many

projects will fall in this scenario for two reasons: first, it is related to general economic assumptions about

decreasing marginal returns to capital and labor, and, in the research or development stage, the behavior of

returns of capital and labor does not have to be fundamentally different to the one observed in the production

process. The second reason is that in case the order of the independent experiments that are part of the

pilot stage is not fixed, then the firm will want to put the projects with higher learning per dollar spent first.

Decreasing returns to investment will be an obvious consequence of this reordering.

β > 1 corresponds to increasing returns to investment. In this case, if we advance a certain fraction

towards completion, the fraction of uncertainty reduced will be proportionally less. Later research dollars

are more productive than earlier ones. This behavior is less prevalent than that of decreasing returns

to investment. However, it also has some natural justifications, mainly based on learning curve type of

arguments. Researchers and engineers get more productive in the course of time, especially when skills

related to experiments in later stages are more relevant to skills required in earlier stages.

At this point the avid reader may have noticed that, although we mentioned reduction of technical uncertainty
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as one of the primary objectives of these pilot investments, the expression in (4) apparently implies the

contrary, since the volatility term is increasing with the level of investment in the pilot stage. There is no

such contradiction. Investment in the development stage will reduce the technical uncertainty that will be

faced in the commercial stage after the full scale project is launched. As the total technical uncertainty

faced by the project is fixed, more uncertainty resolved during the development stage, i.e., a higher σ̂z(I)

will result in less exposure to technical risk at the launch of the project. Switching technical risk from the

commercial to the development stage is beneficial for the firm, as risk in the development stage is resolved

before undertaking the substantial and irreversible investments that are required to implement most projects

in capital and technological intensive industries.

Assumption 7 : Technical Uncertainty is completely diversifiable and, therefore, discounted at the risk free

rate. In other words, the firm will not demand any additional return over the risk free rate for being exposed

to this technical uncertainty. This will effectively ”complete” the market by setting the market price of

risk of dz to zero. This assumption, widely used in the real options literature, may not apply in many real

scenarios, where firms may actually place an important premium on risk. However, relaxing this assumption

should not change our main results drastically, since as technical risk is shifted from the commercial stage

to the pilot stage higher discounting in latter will compensate lower discounting in the former.

3 Solution of the Model

3.1 Change of Measure

To solve for the value of this investment opportunity and the optimal amount of resources that should be

devoted to the pilot stage, we rely on Stochastic Calculus and standard Financial Engineering techniques.

However, we should bear in mind that on standard financial settings, markets are complete, i.e., all different

sources of risk are spanned by tradable assets in the economy. In this case, any financial derivatives whose

payoff is constructed from the fundamental assets must have a unique price consistent with no arbitrage.

Moreover, there is a unique risk neutral measure under which the price of any tradable asset discounted by

the money market account is a martingale, i.e., the price of any tradable asset grows at the risk free rate.

In our scenario, the technical uncertainty faced by our projects is specific to the firm and not traded in the

market. Hence, as in most real investment opportunities, we are working in an incomplete markets setting

with infinitely many values consistent with the no arbitrage condition (in general these feasible values are

defined by a lower bound and an upper arbitrage free bound derived by replication techniques) and infinitely

many equivalent risk neutral measures that give us an arbitrage free economic valuation. Thus, to value
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these investment opportunities additional considerations as how the firm values private risk are needed. This

is the role of Assumption 7. By adding the additional risk consideration that the firm takes technical risk as

completely diversifiable, it allows us to work with a unique risk neutral measure. Hence, unlike in complete

market scenarios, the values obtained for these real investment opportunities shall be regarded as plausible

economic valuations and not as strict non arbitrage prices.

All technical details relevant to the construction of the risk neutral measure Q will be left for the appendix.

It follows from the appendix that the processes that St and Kt follow under Q are given by:

dSt = (rf − δs)Stdt + σsStdwQ
1 (5)

dKt = (rf − δk)Ktdt + σkKtdwQ
2 + σz(I/I)βKtdzQ (6)

with wQ
1 , wQ

2 and zQ being standard Brownian motions under Q. Moreover wQ
1 and wQ

2 have a correlation of

ρ and zQ is independent of both wQ
1 and w2

Q. δk is a constant that plays a role of a ”dividend rate” for costs

and represents nothing more than the difference between the risk adjusted return for costs and its intrinsic

growth rate.

δK = rf − αk +
αc + δc − r

σc
σk (7)

We will work hereafter in the risk neutral measure Q. Thus, for notational simplicity, from now on we will

omit the superscripts Q from our Brownian motions.

3.2 Second Stage: Value of the Option given an Investment Level

We are now ready to solve our problem. For convenience, instead of choosing the total investment level

I from [I, I] we will choose the α = I/I, the fraction of the maximum pilot investment possible, where

α ∈ [α0, 1], being α0 = I/I the minimum fraction feasible.

The problem of valuing the option to invest at a fix investment level α results to be nothing more than

pricing an option to exchange one asset for another, with the amount invested in the pilot stage driving the

volatility of one of the assets.

The following proposition gives the value of the investment opportunity corresponding to an investment

fraction of α.

Proposition 3.1 Under Assumptions 1-7, when a fraction α ∈ [α0, 1] is invested in the pilot stage, the value

of the investment opportunity V (α), is given by:
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V (α) = S0e
−δsT N(d1(α))−K0e

−δkT N(d2(α))− αI (8)

where δk is given by (7) and d1(α) and d2(α) are given by:

d1(α) =
ln(S0/K0) + (δk − δS + σ̂2(α)/2)T

σ̂(α)
√

T
(9)

d2(α) = d1(α)− σ̂(α)
√

T (10)

σ̂(α) =
√

σ2
s − 2ρσsσk + σ2

k + σ2
zα2β (11)

Proof : First note that after the firm decides to invest a level αI it obtains nothing more than the option to

exchange one asset (total revenues) for another (total costs) at the time of completion of the pilot stage.

The value of this option will be obtained by working in the risk neutral measure Q constructed in the

appendix. Note that under Q, St and Kt follow (5) and (6) respectively and the final payoff at time T that

determines the boundary condition is given by: max[ST −KT , 0].

The value of an option to exchange one asset for another was originally derived by Margrabe (1978) who

solved the non-arbitrage PDE that the value of this option has to follow. However, the solution could be

easily obtained if we do a further change of measure and work in a risk neutral forward with respect to the

portfolio of Kt and its dividends. Both procedures result in (8). See Appendix for details on the calculation

of this expression as well as that of equation (21).

We must also note that solution obtained is independent on the risk free rate and only the dividend rates of

revenues and costs matter at the end. We could also think of the solution as being the value of a European

Call with a fixed strike K = K0, a risk free rate of δk and a diffusion term of revenues σs = σ̂(α).

Let’s now characterize the sensitivities of the option value to the effective volatility term σ̂(α) and the

fraction of investment α.

Borrowing some terms from the financial derivatives literature we will define vega(σ̂) = δV (σ̂)/δσ̂ and

vomma(σ̂) = δ2V (σ̂)/δσ̂2.

We can now characterize the sensitivity of the option value to the investment level.

Proposition 3.2 Let’s denote Vα and Vαα the partial derivatives of the value of the investment opportunity

with respect to the fraction of investment. Then the following equalities hold:
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vega(σ̂(α)) = S0e
−δST N ′(d1(α))

√
T (12)

vomma(σ̂(α)) =
vega(σ̂(α))d1(α)d2(α)

σ̂(α)
(13)

Vα(α) = vega(σ̂(α))β
σ2

Z

σ̂(α)
α2β−1 − I = S0e

−δST N ′(d1(α))
√

Tβ
σ2

Z

σ̂(α)
α2β−1 − I (14)

Vαα(α) = vega(σ̂(α))β
σ2

Z

σ̂(α)
α2β−2

[
β

σ2
Z

σ̂2(α)
α2β(d1(α)d2(α)− 1) + (2β − 1)

]
(15)

where d1(α), d2(α) and σ̂(α) are given by (9), (10) and (11) respectively.

We could break up equation (14) into two components the marginal revenues, given by the first term in the

equation and marginal costs which are constant and equal to I.

3.3 Solution of The First Stage: Finding the Optimal Investment Level

At time 0, the firm chooses an investment fraction α ∈ {0} ∪ [α0, 1] to maximize:

max
α∈{0}∪[α0,1]

V (α)− αI (16)

where V (α) is given by (8) for α ∈ [α0, 1] and V (0) = 0, with the latter corresponding to abandoning

the project. We will call the optimal investment fraction α? and the value of the investment opportunity

V ? = V (α?).

Before solving the problem and analyzing its comparative statics we will make the following simplifications.

First, we can assume without loss of generality that I = 1, since we can scale all the terms in (16) by I.

Then, let σ2
m = σ2

s − 2ρσsσk + σ2
k and κ = σ2

z/σ2
m, so that σ̂(α), which we will call the effective volatility

term is equal to σm

√
1 + κα2β . σm corresponds to the total tradable uncertainty of the project, which for

this setting is also the total market uncertainty. Note that this market uncertainty is higher when revenues

and costs are negatively correlated (positive shocks in revenues are reinforced with decreases in costs and

viceversa) and is lower when they are positively correlated (increases in revenues are somewhat compensated

by increases in cost). The ratio κ will play a very important role in the solution to the problem. It is a

measure of the relative importance of the technical uncertainty with respect to the market uncertainty of

the project and it will depend on a series of factors like whether the final product is basic or luxury, the

dynamics of competition, existence of possible substitutes or how capital intensive the project is. Thus κ

will vary according to the industry in general, and to the specific project in particular. For instance, this
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ratio will generally be higher in the pharmaceutical or food industries and lower in the auto industry or the

high tech sector.

Let us denote as MR(α) the first term of Vα in (14). The behavior of this marginal revenue function will

turn out to be crucial for our results and economic analysis, so we need to characterize completely. If we

fixed σm and κ then from (14) our marginal revenue function MR(α) becomes:

MR(α) = S0e
−δST N ′(d1(α))

√
Tβ

κσm√
1 + κα2β

α2β−1 (17)

Proposition 3.3 The marginal revenue function is strictly positive for any α > 0. If β ≤ 0.5 and

d1(0)d2(0) < 1 + (1 − 2β)(1 + κ)/(βκ) then MR(α) is strictly decreasing in α for α ∈ [0, 1]. If β > 0.5

then there exists a unique threshold α̃ such that for any 0 < α < α̃ the marginal revenue function is strictly

increasing in α and for any α > α̃ the marginal revenue function is strictly decreasing in α. Moreover, when

α̃ ∈ [0, 1] then δα̃/δβ > 0.

Proof: Take the case of β ≤ 0.5. We will call this scenario strong decreasing returns to investment. First

note that the assumption d1(0)d2(0) < 1 + (1− 2β)(1 + κ)/(βκ) is used to rule out pathological cases of low

volatility and extreme moneyness 1. It is equivalent to saying that σ4
mT 2/4+σ2

m(1+(1−2β)(1+κ)/(βκ))T−
[ln(S0/K0) + (δk − δs)T ]2 > 0 and, as said before, it will not hold in cases of extremely low volatility and

when it is very likely that either the commercial stage would be launched or that it would discarded at time

T. As we are interested in modelling situations where uncertainty and optionality play a significant role such

scenarios will not economically relevant for our analysis.

We can easily check that d1(α)d2(α) is increasing in α and (1 + κα2β)/(κα2β) is decreasing in α. This

together with our assumption implies that for any α ∈ [0, 1]:

d1(α)d2(α) <
(1− 2β)(1 + κα2β)

βκα2β
+ 1

This results in the term inside brackets in (15) being negative and MR(α) being strictly decreasing in

α ∈ [0, 1]. At α = 0, MR is unbounded for any β < 0.5, i.e., limα→0 MR(α) = +∞, and it is equal to

a positive number for β = 0.5. Moreover as α goes to infinity, MR(α) goes to zero. This results in V (α)

being a strictly increasing concave function and, therefore, there exists the possibility of an interior solution

to our problem. The restrictions on α ∈ [α0, 1] and some feasible combinations of the other parameters

1We define moneyness as the ratio S0
K0e(δk−δs)T . A high level of moneyness implies that the commercial stage will be very

likely to be launched in the future, while a low level of moneyness implies that the commercial stage will most likely be discarded.
In most of the financial literature this term is defined as S0/K0, here we introduce an additional correction factor to take the
drift effect into account.
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may also yield solutions on the boundary of α, i.e., α = α0 or α = 1. Decreasing marginal revenues in the

fraction of investment is consistent with the fact that β ≤ 0.5 characterizes strong decreasing returns to

investment, each additional dollar spent in the pilot stage is a lot less productive in reducing uncertainty

than the previous one, in other words, the more investment that has been made along the way, the less the

marginal payoff derived from additional investment.

Now, let’s analyze the case when β > 0.5. In this case MR(0) = 0 and MR(α) > 0 for any positive α. From

(17) and the fact that as α goes to infinity, σ̂(α) and d1(α) do so as well we have that limα→+∞MR(α) = 0.

Moreover, since the term inside the brackets in equation (15) is positive for α small enough and negative for

large enough α, we can guarantee the existence of a positive α̃ such that Vαα = 0. This α̃ is the solution to

the following equation:

2β − 1
βκ

=
α2β(1− d1(α)d2(α))

1 + κα2β
(18)

Now, since d1(α)d2(α) is decreasing in α and α2β/(1+κα2β) is increasing in α, the RHS of (18) is increasing

in α. This guarantees the uniqueness of α̃. Hence, MR(α) is strictly increasing (V (α) is strictly increasing

and convex) for any 0 < α < α̃ and strictly decreasing (V (α) is strictly increasing and concave) for α > α̃.

Typical shapes of the marginal revenue function for β < 0.5, β ∈ [0.5, 1] and β > 1 are plotted in figure 1.
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Figure 1: Typical shapes of the Marginal Revenue function for β < 0.5, 0.5 < β < 1 and β > 1 as a function of level

of investment α

In order to show that if α̃ ∈ [0, 1] then δα̃(β)/δβ > 0, we differentiate implicitly (18) with respect to β to
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get:

1
β2κ

=
δ

δα

[
α2β(1− d1(α)d2(α))

1 + κα2β

]
δα

δβ
+

δ

δβ

[
α2β(1− d1(α)d2(α))

1 + κα2β

]

δα

δβ
=

{
δ

δα

[
α2β(1− d1(α)d2(α))

1 + κα2β

]}−1 {
1

β2κ
− δ

δβ

[
α2β(1− d1(α)d2(α))

1 + κα2β

]}

For α ∈ [0, 1] the effective volatility term σ̂(α) is decreasing in β. Thus, d1(α)d2(α) is increasing in β. The

term (α2β)/(1 + κα2β) is decreasing in β for α ∈ [0, 1]. All this implies that the R.H.S of (18) is decreasing

in β. This together with the previous expression and the fact that the R.H.S of (18) is increasing in α imply

that δα̃/δβ < 0 completing the proof.

The fact that the inflection point of the marginal revenue functions is increasing in β implies that as we

move from decreasing to increasing returns to investment it is more likely that the region in which MR(α)

is decreasing will fall outside of our feasible range, [α0, 1]. For β high enough we have that α̃ > 1 and we

will only be faced with an increasing MR(α) in our region of interest. In fact, we will see that for the case of

increasing returns to investment, β > 1, this will happen for all reasonable combination of parameters. The

opposite occurs as β approaches 0.5. In this case, α̃ keeps on decreasing until α̃ < α0 and we are left with a

decreasing MR function in our region of interest as our original intuition would suggest. Additional insights

about how the learning parameter affect the value of our investment opportunity and optimal investment

decision will be given in the following section.

Note also that even though we have characterized MR(α) for any α > 0, for the solution of (16) we will only

be interested in the behavior of this function on our feasibility region [α0, 1].

Let α̂ denote the solution to the equation MR(α) = 1 when it exists, i.e, α̂ solves:

S0e
−δST N ′(d1)

√
Tβ

κσm√
1 + κα2β

α2β−1 = 1 (19)

When β > 0.5, due to the inflection point of V (α), α̂ may have either two or no solutions. For the former

case we will denote them as α̂L and α̂H with α̂L < α̃ < α̂H .

Now we are ready for a complete characterization of the solution to our investment problem, which is stated

in the following Proposition.

Proposition 3.4 Let α̃ and α̂ be defined as the solutions to (18) and (19) when they exist. Then the

solution to our investment problem (16), which we will denote as α? is given by:
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a) For 0 < β ≤ 0.5. We have 3 subcases:

a1) If MR(α0) > 1 and α0 < α̂ < 1 then α? = α̂.

a2) If MR(α0) > 1 and α̂ > 1 then α? = 1.

a3) If MR(α0) < 1 then α? = arg maxα∈{0,α0} V (α).

b) For β > 0.5. We have 4 subcases:

b1) There are no solutions to (19) in [α0, 1] with MR(α) < 1 for all α ∈ [α0, 1], then α? = arg maxα∈{0,α0} V (α).

b2) There are no solutions to (19) in [α0, 1] with MR(α) > 1 for all α ∈ [α0, 1], then α? = arg maxα∈{0,1} V (α).

b2) The only solution to (19) in [α0, 1] is α̂L. Then α? = arg maxα∈{0,α0,1} V (α). This scenario could only

occur when α̃ > α0.

b3) The only solution to (19) in [α0, 1] is α̂H . Then α? = arg maxα∈{0,bαH} V (α). This scenario could only

take place if α̃ < 1.

b4) There are two solutions, to (19) in [α0, 1]. Then α? = arg maxα∈{0,α0,bαH} V (α). This scenario could

only occur when α0 < α̃ < 1.

Proof : Follows trivially by simple analysis and the characterization of MR(α) given before.

The general characterization of the solution given above may be somewhat overwhelming given all the

possible combinations involved. However, we will see that for most reasonable combination of parameters

all this set of possible combinations could be dramatically reduced and some general conclusions may be

obtained. Moreover, as to focus exclusively on the effect of technical uncertainty reduction and the returns

to investment in the optimal investment decision we will focus on the case where V (α) > α for α ∈ [α0, 1], i.e,

all the feasible levels of investment are worth undertaking. This will get rid of the no investment solutions

to our problem, so that the solution will rely entirely on our MR(α) function and how it is affected by our

different parameters of interest.

Figure 2 shows two typical situations where an interior point solution exist for β ≤ 0.5 and β > 0.5, which

correspond to the cases a1 and either b3 or b4 (depending on the value of α0) respectively.

For the case of strong decreasing returns to investment 0 < β ≤ 0.5 an interior solution exists if marginal

revenues start above one at α0, the beginning of the feasible region, and end below one at the end of the

feasible region α = 1 (case a1). An existence of an interior point solution is also possible for β > 0.5,

(cases b3 and b4) and the closer β is to 0.5, the greater combination of parameters for which this will occur.

With β > 0.5 the marginal revenues are first increasing and then decreasing. For this case, the lower β the

more learning we get from the first research dollars invested with respect to later investment. This results
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Figure 2: Illustration of the existence of an interior point solution, cases a1 (β ≤ 0.5) and either b3 or b4 (β > 0.5)

respectively

in a lower inflection point for the marginal revenue function and hence, in a greater interval on which the

marginal revenues are decreasing in the fraction of investment α. We will be especially interested in the

case of an interior solution, since the optimal investment fraction and the value of the option will change

smoothly with changes in any of our parameters of interest. It is in these cases, where we will get most of

the interesting comparative statics and economic insights of our model.

Following the opposite reasoning as β increases away from 0.5, the higher the share of the total learning for

which later research dollars invested are responsible, the higher the inflection point of the marginal revenue

function, and the bigger the set of parameter combinations for which marginal revenues are increasing in our

feasible range (α̃ > 1). The following expression is necessary and sufficient for this condition to hold:

d1(1)d2(1) =
(ln(S0/K0) + (δk − δs)T )2 − σ̂4(1)T 2/4

σ̂2(1)T
> 1− 2β − 1

β

√
1 + κ

κ

In fact, we can easily check that for increasing returns to investment (β > 1) this inequality is satisfied for

most, if not all, reasonable parameter combinations. When this occurs the optimal investment level will

lie on the boundary points: either the minimum investment required for a feasible implementation will be

made (α? = α0) or the maximum possible investment will be undertaken (α? = 1). In this case, the optimal

investment decision will not change smoothly with changes in the key parameters of our models. For this

reason and the fact that β < 1 corresponds to more realistic specifications of the learning process, this case
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will not be as interesting to our analysis as the case when interior solutions take place.

4 Economic Analysis and Main Comparative Statics

In this section we will go over the most important comparative statics and economic insights that follow

from our model.

First, and not surprisingly, the solution to our problem will be very sensitive to the learning coefficient β.

Since the focus of our paper is to value learning, this parameter is key to our model, since it affects the way

learning is distributed across the cumulative investment path.

The parameters that affect the volatility of our option, κ = σ2
z/σ2

m (the relative weight of technical and

market uncertainty in our project) and the absolute volatility terms σm and σz will also be of economic

significance, as market and technical uncertainty have different effects in the incentive to invest.

The initial assessments of revenues and costs S0 and K0 and the drift parameters δs and δk are also relevant

since they affect the moneyness of our option and, through it, the marginal gain in its value resulting from

an increase in uncertainty resolved.

We will explore the effect of changes of all of this parameters in our result and try to obtain general

economic insights that we can extrapolate to many investment situations. Since some of these calculations

are algebraically intensive, the readers are referred to the appendix for the complete calculations and all

other details left out in this section.

4.1 Sensitivity to the Learning Coefficient (β)

The learning coefficient β characterizes ”returns” to investment in the pilot stage, where we could think of

returns as the total technical uncertainty resolved. We saw in the previous that this coefficient is the main

driver of the shape of the marginal revenue function. As expected, low values of β (higher contribution to

total learning from the first dollars invested) will result in a decreasing marginal revenue function in the

feasible range for α. On the other hand, high values of β (more contribution to total learning from later

research dollars invested) result, in general, in an increasing marginal revenue function along the feasible

investment range.

It is also worthwhile to emphasize that when the maximum possible investment is made (α = 1) the total

uncertainty reduction is the same regardless of the value of β. For this case β only affects the way in which

learning is distributed across the cumulative investment path of the pilot project.

Using simple principles of monotone comparative statics, we can see that the effect of β on the optimal
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investment level is governed by the behavior of the function δMR(α)/δβ.

Proposition 4.1 For a fix β there exists an ᾰ(β) ∈ (0, 1) such that δMR(α)/δβ < 0 for any α ∈ [0, ᾰ(β))

and δMR(α)/δβ > 0 for any α ∈ (ᾰ(β), 1].

Proof Since the proof of this proposition is mainly algebraic and has little economic relevance, we will leave

it for the appendix.

The result has a nice economic interpretation. Remember that β governs the way in which learning relates

to total investment. A higher β implies that the later dollars invested are responsible for a higher share of

the cumulative learning with respect to earlier dollars invested. As β is increased, more learning is shifted

from the beginning of the cumulative investment path (low α) to its end (high α). This causes a decrease

in marginal revenues for low α and an increase in marginal revenues for high α, since now later marginal

investments are resolving more additional uncertainty. This property will help us characterize the sensitivity

of the option value and the optimal investment fraction to β.

Proposition 4.2 The option value V ? is decreasing in β. If the optimal investment decision α?(β) is at

at an interior point (α?(β) ∈ [α0, 1]) then an increase in β raises optimal investment if α?(β) > ᾰ(β) and

decreases the level of investment otherwise. The first case is more common, while the second one occurs only

for low feasible thresholds α0 and very high levels of market uncertainty.

Proof: If the current optimal investment decision is at an interior point then it must be the case that

MR(α?(β), β) = 1. Moreover MR(α) must be decreasing in a neighborhood of α?, otherwise we would

have a local minimum. Assume an infinitesimal increase from β to β′ > β occurs. If α?(β) > ᾰ(β) then by

proposition 4.1, MR(α?(β), β′) > 1. Then the current investment level can not be optimal, since we can

increase the value of the option by increasing α? until MR(α?, β′) = 1. Hence, α?(β′) > α?(β). Figure 3

illustrate this reasoning. The same reasoning holds for an infinitesimal decrease in β and for the case where

α?(β) < ᾰ(β).

Now let the value of the option be V ? = V (α?(β), β), where we are writing explicitly the dependence on α

and β, our parameters of interest. Taking the derivative with respect to β:

δV ?

δβ
=

δV

δα
|(α?(β),β)

δα?(β)
δβ

+
δV

δβ
|(α?(β),β)

If α?(β) is an interior point then by the envelope condition δV
δα |(α?(β),β) = 0 and since

δV

δβ
=

S0e
−δST N ′(d1)α2βσm ln(α)√

1 + κα2β
< 0
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Figure 3: Change on the optimal investment fraction as a result of an increase in β for the case of an interior point

solution and α?(β) > ᾰ(β)

then we have that the option value is decreasing in β.

Now, in case the optimal decision is at a boundary point, then the envelope condition δV
δα |α?(β) = 0 does

not apply. However, for infinitesimal changes α? will remain the same. Hence, the first term still vanishes

completing our proof.

This result has interesting economic insights. First, the fact that the value of the investment opportunity

decreases with β is intuitive, since an increase in β could be thought of as a decrease in the overall productivity

of the investment opportunity, as for any given investment α ∈ [α0, 1) we are learning less than we did before.

The reduction of value of the option is a logical consequence.

The effect of an increase of β in the value of investment is less obvious. If the current solution is at an interior

point and increases in β makes marginal investment more productive than before (ᾰ(β) < α?(β)), then the

firm has an incentive to devote more resources to the pilot project in order to take advantage of the shift in

learning from the beginning to the end of the cumulative investment path. This is not inconsistent with the

fact that the option value has decreased, since the value that the firm would obtain if the investment level

is not increased in response to an increase in β would be even less than the value of the option at the new

optimal investment level. In other words we have that:

V (α?(β), β) > V (α?(β′), β′) > V (α?(β), β′)
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This effect of an increase in investment as a response to a higher β will be observed in most parameter

combinations that yield interior point solutions. Nevertheless, the opposite effect is also possible, an increase

in β may decrease incentive to invest when ᾰ(β) < α?. This occurs only when uncertainty is unusually high,

β is low and the lower boundary α0 is also unusually low. For those cases, the optimal investment level is

low and increases in β decrease marginal revenues. Less investment will result as a consequence. Although

theoretically possible, this scenario shall not appear frequently in practical scenarios.

Finally, in case the current optimal investment is at the boundaries, small changes in β would not have

any effect in the investment decision unless V (α0) is very close to V (1). In this particular case, optimal

investment may jump from α0 to 1 or viceversa as a result of changes in β. The direction of this jump

depends on whether α0 exceeds ᾰ(β) or not.

4.2 Sensitivity to the Uncertainty Parameters (κ, σm and σz)

First let us analyze the consequences of changing the relative weight of technical uncertainty κ keeping

market uncertainty fixed. From equation (17) and a bit of algebra, it is easy to check that δMR(α)/δκ > 0

for any α ∈ [0, 1] unless σm takes unreasonably large values. Moreover, since the vega of an option is positive

and the effective volatility is increasing in κ, by simple envelope arguments we can easily verify that the

value of the option V ? is also increasing in κ (see the appendix for algebraic details). This implies that

the boundary values of MR(α0) and MR(1) are also increasing in κ and, hence, the optimal fraction of

investment will be nondecreasing in κ, δα?/δκ ≥ 0. This result is fairly intuitive since, as investment in

the pilot stage is made to reduce technical uncertainty, the higher the κ the bigger the relative weight of

technical uncertainty in the project and the higher the total gain of reducing this technical uncertainty. This

increases the optimal investment fraction if the solution was at an interior point. Increasing κ has also an

absolute effect, since it is equivalent to increasing the effective volatility term σ̂(α). As is well known, an

increase in total uncertainty increases the value of an option due to the convexity of its payoff function.

Since κ is directly proportional to σz, the previous argument also applies if we increase σz keeping σm

constant. This increases total investment due to two effects: the first an absolute effect since increasing σz

amounts to an increase in total uncertainty and the second a relative effect since we are increasing the type

of uncertainty that is reduced by investment. The value of the option V ? is also nondecreasing in σz.

An increase in σm keeping σz constant also increases the value of the option. Unlike for technical uncertainty

optimal investment is non increasing in σm, unless the total effective volatility of the project is low (refer

to the appendix for the exact threshold). This is also expected, since σm is the uncertainty that is resolved

by the passage of time, without the need for investment. This results in a disincentive to reduce the type of
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uncertainty that could be resolved by investment, technical uncertainty. Less investment in the development

stage follows as a logical conclusion. These results are consistent with those obtained by Pindyck (1993) and

Schwartz (2003). For the cases where σ̂(α) is low, raising σm will increase the marginal gain from investing,

thus, market and technical uncertainty have reinforcing effects on the incentive to invest. However, when

effective volatility is low, the optimal decision is generally not to invest at all. Thus, changes in market

uncertainty will have no effect in the optimal investment decision.

4.3 Sensitivity to Assessments of Revenues and Costs (S0 and K0)

We will start studying the effect on the value of the option and our optimal investment level α? of changes

in K0, the initial assessment of costs. An increase in K0 will decrease the value of an option and a decrease

in K0 will increase it, as expected. However, the effect on the optimal investment decision depends on how

the moneyness of the option affects its vega, the marginal gain due to an increase in volatility.

We have defined the moneyness of the option as the ratio S0e
(δk−δs)T /K0, which we will label M . An at the

money option corresponds to M = 1 and it has roughly the same chances of being exercised or not in the

future. A high value of M corresponds to an in the money option that is very likely to be exercised in the

future, whereas a low M corresponds to an out of the money option with a small probability of exercise.

The vega of an option is increasing in its moneyness when d1(α) < 0, which is equivalent to log(M) <

−σ̂(α)2T/2. This corresponds to an out of the money option with low chances of being exercised, more so

if the volatility is high. The vega of an option is decreasing in its moneyness when d1 > 0, or log(M) >

−σ̂(α)2T/2. This corresponds to an in the money or a bit out of the money options with reasonable

chances of being exercised. Translated to our real options scenario, if it is likely that commercial stage

will be undertaken, the marginal gain from higher volatility decreases as this likelihood increases. Learning

becomes less valuable as the chances of launching the commercial stage increase. When the option is out of

the money, the contrary occurs. An increase in moneyness increases vega and makes learning more valuable.

We could understand better this result if we think of why uncertainty increases the value of an option. It

does so because it allows to profit from the successful outcomes while limiting losses on the negative side.

When an option is deep in the money its value is close to the underlying minus the discounted strike price

since it is very unlikely that it will not be exercised in the future. Additional increases in volatility although

valuable, are less so than when the option is at the money and the final exercise decision is more uncertain.

Therefore we have that if d1(α) > 0 then δMR(α)/δK0 > 0 and viceversa. If these property holds for the

current optimal solution α? then δα?/δK0 ≥ 0. An increase in the expected costs of a project when the

project is likely to be launched decreases its moneyness and thus, increases the optimal level of investment,

23



since it pays more to learn in the pilot stage. The reverse logic could be applied to an increase in K0 for

options that are way out of the money. Note that, even though an increase in the assessment of costs for a

project likely to be undertaken is always bad news for the firm, since it decreases the value of its investment

opportunity, it might be optimal to invest more in the development stage of this project in response to these

bad news. Doing otherwise will decrease the value of the investment opportunity even further. This is similar

to what we found when analyzing the sensitivity to β.

The effect on marginal revenues of an increase in S0 has a similar economic explanation. From the appendix

we can see that marginal revenues are non decreasing in S0 if d1(α) < σ̂(α)
√

T or equivalently when

log(M) < σ̂(α)2T/2. When there is a significant probability of not launching the commercial stage, increases

in the assessment of its revenues make learning more valuable and result in a higher incentive to invest. On

the contrary if log(M) > σ̂(α)2T/2 then marginal revenues are non increasing in S0. In other words,

if it is very likely that the commercial stage will be launched, an increase in expected revenues reduces

the incentive to invest. Again, if these property holds for the current optimal solution α? we have that

δα?/δS0 ≤ 0. Paralleling the reasoning made for costs, the optimal response to the good news of an increase

in the expected revenues of a very likely to be exercised project is to reduce the investment in its development

stage.

4.4 Sensitivity to the Drift Terms of Revenues and Costs (δs and δk)

Effects of changes in the drift terms on the value of the option and the optimal investment policy are very

similar to the ones occurring for changes in S0 and K0, as increases in δk are equivalent to decreases in

K0 and increases in δs to decreases in S0. The same moneyness effect in the vega of the option that we

analyzed extensively above will drive all the results. The value of the investment opportunity will always be

non decreasing in δk and non increasing in δs. However, optimal investment will be non increasing in δk if

d1(α?) > 0 and will be nondecreasing otherwise, i.e., if the option is well out of the money. For the case of

δs, optimal investment will only be nondecreasing in δs is the option is well in the money, more specifically

if d1(α?) > δsσ̂(α?)
√

T , and will be non increasing otherwise.

5 Robustness

The model we developed gave us closed form solutions at an expense of some simplifying assumptions.

These assumptions were made for simplicity and, as we will see in this section, most of them could be relaxed

without significantly affecting our main results. Probably the only assumption whose relaxation could not be

accommodated in this setting is the one period investment. Allowing for multiple revisions on the investment
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process across the pilot stage requires a discrete or continuous time dynamic programming formulation which

is beyond the scope of this paper. In this section we will sketch the changes in the procedure and solutions to

our problem as a result of incorporating the possibility of waiting after completion of the development stage,

introducing a growth rate dependent on the level of investment and making time to completion flexible and

proportional to the amount of resources devoted to the pilot stage.

5.1 Incorporating the Possibility of Waiting after Completion

Introducing this extra level of flexibility at the end of the pilot stage will change the boundary condition

of the equation satisfied by V (α). Before, the commercial stage had either to be undertaken or abandoned,

implying a value of the option at time T of max[ST − KT , 0]. Instead of that, we know have get at time

T a perpetual American option to exchange one asset for another with the process of St and Kt for t ≥ T

following in the risk neutral measure:

dSt = (rf − δs)Stdt + σsStdw1

dKt = (rf − δk)Ktdt + σkKtdw2

with dw1 and dw2 being two standard Brownian Motions with a correlation of ρ in the risk neutral measure.

Note that, since no more technical investment is made only the market Brownian w2 is driving the value

of costs. This setup could be easily solved by a further change of measure, considering Kte
δkt as our new

numeraire asset. We obtain that the commercial project will be launched if ST > KT
γ

γ−1 where γ is equal

to:

γ = 1/2− (δk − δs)/σ2
M +

√
2δk/σ2

M + [(δk − δs)/σ2
M − 1/2]2 (20)

The value of the option at time T is equal to ST − KT if ST > KT
γ

γ−1 . Otherwise it is given by: (γ −
1)γ−1Sγ

T K1−γ
T /γγ

This setting makes sense only when δs > δk since otherwise the firm will want to wait forever.

By plugging this new boundary condition we could find the equivalent of (8) under this more flexible scenario.

It is given by:

V (α) = S0e
−δST N(da)−Ke−δKT N(db) + (γ − 1)γ−1Sγ

0 K1−γ
0 e(δk(γ−1)−δSγ+0.5bσ2(α)γ(γ−1))T N(dc)− αI (21)
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where da(α), db(α) and dc(α) are given by:

da(α) =
ln(S0(γ − 1)/K0γ) + (δk − δs + σ̂2)T

σ̂
√

T
(22)

db(α) = da(α)− σ̂(α)
√

T (23)

dc(α) =
ln(K0γ/S0(γ − 1))− [(δk − δs)γ + σ̂2(α)γ(γ − 1)/2]T

γσ̂(α)
√

T
(24)

with σ̂(α) being defined as before. The complete calculation is given in the appendix.

Obviously this expression is higher than the one obtained previously, with the difference being greater in

the case of low δs, i.e., little opportunity cost of waiting and high market uncertainty, i.e, high benefits

from waiting. The sensitivity of changes in β, the uncertainty parameters and moneyness parameters in the

optimal investment policy will have the same qualitative effects as in our previous case, but these effects

will be less strong, since now technical uncertainty plays a relatively less important role against market

uncertainty than in the benchmark model.

5.2 Incorporating an Investment Dependent Growth Rate

In our main model, pilot investment is only affecting the technical volatility of the costs process. Nevertheless,

it is common that these technological investments also bring together a expected cost reduction.

Using the same proportionality assumption as for the technical volatility term, we can assume the drift term

αk(I) has the following form:

αk(I) = αk − ν

(
I

I

)2η

(25)

with αk and ν > 0 being constant real numbers. We can think of αk as the a component of the drift

determined by market factors and independent on the level of investment. The second term is the expected

rate of cost reduction inherent to the technology under consideration and is only present when investment is

taking place. There is a proportionality relation between the level of pilot investment and the contribution

to expected cost reduction from this second term, with the proportionality coefficient given by η. As an

increase in investment will generally reduce expected costs, ν is assumed to be a positive constant.

The value of the option to invest is still given by (8), but with δk(α) = δk + να2β replacing δk in (8), (9)

and (10).

As the key driver of all our results was the marginal revenue function, we need to recalculate with these

additional drift effect. Let us label the new marginal revenue function by M̂R(α) to distinguish it from the
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marginal revenue function of the previous model MR(α). It is given by:

M̂R(α) = MR(α) +
δV (α)
δδk

δδk(α)
δα

The sensitivity of the option to invest to changes in δk is given by:

δV (α)
δδk

= TK0e
−(δk+ναβ)T N(d2(α))

Thus, the adjusted Marginal Revenue function is given by

M̂R(α) = S0e
−δST N ′(d1(α))

√
Tβ

κσm√
1 + κα2β

α2β−1 + TK0e
−(δk+ναβ)T N(d2(α))νηαη−1

This additional drift effect in the marginal gains from investing is positive, due to the fact that the value of

the option to invest is non decreasing in δk and to our assumption that ν > 0. Investing is not only valuable

from the learning that results but also for the fact that it decreases costs in expectation. This results in

an extra incentive to invest compared to the benchmark model analyzed in Section 4 and the insights and

conclusions given there need to be adjusted to incorporate this extra effect. η will govern the way in which

expected cost reduction due to technical investment is distributed along the cumulative investment path and

ν is a measure of the strength of the expected cost reduction.

5.3 Incorporating Variable Time to Completion

In our main model we made the assumption that time to completion was fixed regardless of the level of

investment. However, more resources devoted to the pilot stage may increase time to completion in many

cases. We will incorporate this additional effect by making T an increasing function of our fraction invested

α. Assume this relation takes the general form T (α) with, T (1) = T , T (α0) = T0 and T (α) increasing in α.

T0 is of course the minimum time in which the pilot can be completed. For instance, in case time is linearly

proportional to investment, T (α) could take the particular form:

T (α) = T − T − T0

1− α0
(1− α)

Now, the value of our option given a fixed investment α, V (α) is still given by (8) with T (α) replacing our

previously fixed T. Let’s call the new marginal revenue M̃R(α). It is given by:

M̃R(α) = MR(α) +
δV

δT (α)
δT (α)

δα
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Since δT (α)/δα > 0 the additional effect on the marginal revenue function will decrease the previous marginal

revenues function if δV /δT (α) < 0, in other words if the theta2 of the option is negative, and will increase

MR(α) otherwise.

The theta of the option to invest is given by:

δV (α, T )
δT

=
S0N

′(d1(α))σ̂(α)e−δsT

2
√

T
− δsS0e

−δsT N(d1(α)) + δkK0e
−δkT N(d2(α))

The value of the investment opportunity will be decreasing in time to completion in case δs (the opportunity

cost of revenue forgone) or S0/K0 are significant. In this case, the firm should launch the commercial stage

as soon as it is feasible to do so, as delaying time to completion results in a significant economic loss. When

δk is high, increasing time to completion may actually increase the value of the option, as it allows for a

greater expected reduction on final costs.

In most competitive market environments δs is considerable, so that speeding up completion of the develop-

ment stage brings economic value to the firm. In this case, the marginal gain from learning is reduced from

that obtained in model of Section 2, as additional investment has the extra negative effect of delaying the

launch of the pilot project. Thus, all the results and insights of the previous section should be adjusted to

account for this extra disincentive to invest.

6 Applications to Supply Chain Management

Opportunities to invest in order to learn certain features about a product or project without committing

all the resources required for its full scale implementation are commonly present in different industries and

across different stages of the supply chain of a firm. Market uncertainty will generally impact the value of any

project all the way from its initial conception to the end of its lifetime. However, idiosyncratic uncertainty,

could be thought of as a fixed and time independent source of risk that could be reduced by certain actions

taken by the firm and, whose risk, once eliminated, will not affect the value of the project thereafter.

Both sources of risk need not only be present at the development stage of a project, but also in the procure-

ment, marketing and production stages. We believe that the general theoretical framework developed in the

previous sections could be applied, with some necessary modifications to account for the specificity of the

investment under consideration, to help decision making in many practical business situations. Below we

provide a few examples.
2In the financial jargon theta denotes the sensitivity of the price of an option to the passage of time
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1. Airplane Manufacturing Industry: Developing a new model of commercial aircraft

Given the complexity involved in the final product, developing a new airplane model is a gigantic task

that demands an enormous amount of technical, financial and administrative resources. Moreover, the

value of the revenue stream to be obtained during the lifetime of a future airplane model depends

ultimately on the worldwide demand for plane tickets. Hence, it is heavily affected by the current and

expected future state of the economy. In addition, as a new jumbo model usually comes together with

marginal or dramatic improvements of existing technological systems, there is significant uncertainty

with respect to the efficiency of these new technologies, and thus, with respect to the final costs of

the project, which are also influenced by market factors. Simulation and related engineering processes

allow testing of many of these technologies without the need to implement them completely. Technical

pilot projects play a pivotal role in the development stage by helping reduce the technical uncertainty

associated with the final implementation and recurrent costs of the new model under consideration.

2. Mining and Oil Industry: Exploring new reserves

The opportunity to exploit a new mine or oil well presents considerable uncertainty with regard to the

final level of reserves that may be available for extraction. Market factors will drive the price of the

commodity to be obtained and the geological uncertainty will govern the extraction rate of the firm

once the mine or oil well becomes operative. Both, market and geological uncertainty will affect the

value of the mine or well, but the latter is fixed and independent of time and market considerations.

Hence, it plays the role of the idiosyncratic uncertainty in our model. Firms in these industries invest

heavily in geological testing that reduce risk with respect to the level of reserves without engaging in

expensive exploration activities. The present framework should help determine the optimal investment

level for these activities.

3. Fast Food Industry: Introducing mature products in new markets.

This is a natural consequence of globalization, multinationals firms are able to expand into new markets

with strikingly different characteristics from the markets they are used to serving. The opening of many

American fast food chains in the Chinese market in the last 10 years is one of the first examples that

comes to mind. Cultural, social, religious or biological factors could greatly influence the value that a

customer derives from a product or service. Launching the product in a smaller market with similar

characteristics to the market to be targeted is an alternative frequently considered. For example,

Thailand, Taiwan or the Philippines may provide appropriate proxies for the Chinese market. We could

think of the purchasing power of consumers in the new market as the tradable market uncertainty, since

29



it is changing to time and it is correlated with economic fundamentals, such as growth or unemployment

rates. However, the value that a consumer derives from a product and his intrinsic willingness to pay are

inherent to the consumers and, in general, to the market in question. This value is also uncertain and it

is reasonable to consider it fixed or changing very slowly with time. We can consider uncertainty about

the value that a product will have for consumers in the new market as the idiosyncratic uncertainty in

our model. Therefore, the problem of how much to invest in the trial launch of a new product may be

handled by appropriately modifying our setting. For this particular case we need the revenues, instead

of the costs, to be driven by market and private uncertainty.

4. Auto Industry: Contracting with a new supplier.

Efficient procurement is one of the most critical processes in the auto industry, as hundreds of parts

are needed to assemble the final product. Although long standing relationships between the auto

manufacturing companies and their suppliers are common in the industry, the option of obtaining

key components from new suppliers also appears frequently. Moreover, it is not uncommon that

these procurement possibilities come together with significantly lower acquisition costs. However,

service quality, is equally or more important to the auto companies than the final costs. Hence, their

satisfaction depends significantly in non quantifiable characteristics that are usually difficult to include

in a contract such as responsiveness, flexibility or coordination, to cite a few. There is considerable

risk with respect to how an unknown supplier will behave along these dimensions. Changing the entire

procurement processes to work mainly with a new firm instead of another may require a significant

irreversible investment, as many procedures, facilities and other resources may need to be adjusted

or altered to work with the potential new supplier. It is frequently the case, that auto companies

start testing potential new suppliers by awarding them quantities that are not critical for its overall

performance before engaging with them on a long term basis. This uncertainty with respect to the

non quantifiable service levels could be thought of as a fix source of risk that it is intrinsic to the

new firm, and determined by factors such as its corporate culture, its know-how or the personal skills

of its people, among others. Hence, it is equivalent to the idiosyncratic technical uncertainty in our

model and could be partially resolved with these trial procurement contracts. Thus, our setting could

be stretched to analyze what is the optimal level of resources that should be devoted to set up these

contracts.
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7 Conclusions

We have developed a theoretical framework to value pilot project investments in which the revenues

for the commercial stage are driven by tradable market uncertainty and costs are driven by both,

market and idiosyncratic technical uncertainty. The evolution of technical uncertainty is modeled by

a learning coefficient that establishes a proportionality relationship between cumulative investment

and total uncertainty resolved in the pilot stage. For the case of decreasing returns to investment an

interior point solution to the investment problem may be obtained: the total budget assigned to the

development stage is somewhere between the minimum needed for its completion and the maximum

budgetary bound. In this case valuable economic implications are derived from our model. First,

an increase in the learning coefficient, which is equivalent to reducing total learning for any given

investment level, generally raises optimal investment in the pilot stage as it increases the contribution

to learning from later dollars invested. Secondly, although increases in both, market and technical

uncertainty, increase the value of the investment opportunity, they have different effects in the optimal

investment decision. An increase in the latter result in an incentive to invest, while increases in the

former generally reduce the optimal investment in the development stage. In addition, and perhaps a

bit surprisingly, when it is not very likely that the commercial stage will be discarded, an increase in

the assessment of costs, although bad news for the manager, increases the amount of resources that

should be devoted to learning. Analogous effects were found for changes in the assessment of revenues

and the drift rates of revenues and costs.

Some relaxations to the main assumptions of the model were incorporated and its effects on the results

and conclusions were analyzed: the possibility of waiting after completion of the pilot stage, a general

drift rate dependent on the investment made and variable time to completion. They all introduce

additional effects to the marginal revenue function that we need to incorporate to our previous analysis.

As we have limited the scope of this paper to a one period investment setting, a general continuous

time control problem is left for future work. Other possibilities for future research include analyzing

how investment should be distributed between a portfolio of competing and substitute technologies, or

focusing on the learning in the commercial stage itself, which in the current framework is treated as a

black box.

Stanford, California

February, 2005
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8 Appendix

8.1 Change of Measure

We will work with a standard 3 dimensional Brownian motion Bt defined in the standard probability

space (Ω, F, P ). The information set at time t will be given by the filtration defined by this Brownian

motion. Furthermore, Bt = (w1, w2′ , z), with w2′ , defined as (w2 − ρw1)/(
√

1− ρ2), being the market

Brownian for costs that is orthogonal to the market Brownian of revenues.

From Assumptions 4 and 5, the market prices of risk of w1 and w2 are given by λ1 = (αs + δs− rf )/σs

and λ2 = (αc + δc − rf )/σc respectively. Furthermore, since Assumption 7 implies a zero market price

of technical risk then λz = 0. This implies, as we will see later, that the technical volatility term will

have no effect in the drift when switching from the real to the risk neutral probability measure.

By following standard arguments in the finance literature we can now construct and define the equiva-

lent risk neutral measure Q that will give us a value for our option to invest consistent with Assumptions

1-7. We will be working in this measure for the remaining of the paper.

Since w2 = ρw1 +
√

1− ρ2w2′ we can rewrite the process for ct as:

dct = αcctdt + ρσcctdw1 +
√

1− ρ2σcctdw2′

we can now redefine the new risk premium for w2′ , which we will denote as λ2′ as the solution to:

αc + δc − rf = λ1ρσc + λ2′
√

1− ρ2σc

which simplifies to:

λ2′ =
αc + δc − rf − ρσc(αs + δs − r)/σs

σc

√
1− ρ2

Following standard arguments in the finance literature we construct our equivalent measure as follows:

Let θ = (λ1, λ2′ , λz) be the vector of market prices of risk corresponding to the three orthogonal

Brownian motions. Let our density process ξt be defined as:

ξt = exp

(
−

∫ t

0

θdBs − 1
2

∫ t

0

θ.θds

)
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By Ito’s Lemma it is easy to verify that dξt = −ξtθdBt. Moreover, since our market price of risk θ is

bounded, ξt is a martingale3 with finite variance and, therefore, the density process of an equivalent

probability measure Q, which we defined by dQ
dP = ξt.

Then by Girsanov’s Theorem, a standard Brownian Motion under Q, BQ
t , is defined by BQ

t =

(wQ
1t, w

Q
2′t, z

Q
t ) = Bt + θdt = (w1t + λ1t, w2′t + λ2′t, zt + λzt). Replacing this expressions in (1) and (3)

we get that the processes for St and Kt under Q are given by:

dSt = αsStdt + σsSt[dwQ
1 − λ1dt] = (rf − δs)Stdt + σsStdwQ

1

dKt = αkKtdt + ρσkKt[dwQ
1 − λ1dt] +

√
1− ρ2σkKt[dwQ

2′ + λ2′dt] + σz(I/I)β [dzQ + λzdt]

Define wQ
2 as a Brownian motion that has a correlation of ρ with wQ

1 and is independent from z.

Replacing in the previous expressions the values for λ1, λ2′ and λz = 0, we can simplify the process

followed by St and Kt to:

dSt = (rf − δs)Stdt + σsStdwQ
1

dKt = (rf − δk)Ktdt + σkKtdwQ
2 + σz(I/I)2βKtdzQ

with δk defined by:

δk = rf − αk +
αc + δc − r

σc
σk

8.2 Calculation of Equations (8) and (21)

Under the risk neutral measure Q, St and Kt follow (5) and (6) respectively. The boundary condition

corresponding to (8) is given by:

V (α, T ) = max[ST −KT , 0]

From section 5.1 we have that the boundary condition corresponding to (21) it is given by:

V (α, T ) =
(γ − 1)γ−1Sγ

T K1−γ
T

γγ
1{ST <KT γ/(1−γ)} + (ST −KT )1{ST >KT γ/(1−γ)}

3Actually, Novikov’s condition, i.e., E
h
exp( 1

2

R T
0 θs.θsds)

i
< ∞ is a much weaker requirement for ξt to be a martingale and

accommodates stochastic or time dependent market prices of risk. See Duffie (1996) for technical details. This condition is
automatically satisfied in our setting since we will work with constant market prices of risk.
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where γ is given by (20).

We proceed to derive expression (21). The calculation for (8) is analogous and simpler. Let us denote

the value at time t of the option to invest once the fixed payment has already been made by V̂ (α, t).

Equivalently V (α, t) = V̂ (α, t)− αI respectively. Once the initial investment has been made we could

value this resulting option using the equivalent martingale measure principles from financial theory.

The value of the investment opportunity at time 0 is given by:

V̂ (α, 0) = EQ

[
e−rf T (ST −KT ); ST > KT

γ

1− γ

]
+ EQ

[
e−rf T (γ − 1)γ−1Sγ

T K1−γ
T

γγ
; ST < KT

γ

1− γ

]

where Q is the risk neutral measure. In order to simplify the calculation we will do a further change

of numeraire and work in a risk neutral world with respect to Kte
δkt. The value of the option in units

of Kte
δkt will turn out to be a martingale in our Kt risk neutral measure which we will label R. We

will denote our discounted asset St/Kt by S̃t. By a simple application of Ito’s Lemma, under R, S̃t

follows the following diffusion:

dS̃t = (δk − δs)S̃tdt + σ̂(α)S̃tdwR

with S̃0 = S0/K0 and dwR being a Standard Brownian Motion under our measure R. Now we can

value the investment opportunity by pricing our option in a risk neutral world with respect to Kte
δkt.

Since V̂ (α, t)e−δkt/Kt is a martingale under R we have:

V̂ (α, 0)
K0

= ER

[
V (α, T )
KT eδkT

]

V̂ (α, 0)
K0

= ER

[
e−δkT (S̃T − 1); S̃T >

γ

1− γ

]
+ ER

[
e−δkT (γ − 1)γ−1S̃γ

T

γγ
; S̃T <

γ

1− γ

]

V̂ (α, 0)
K0

= ER

[
e−δkT (S̃T − 1); S̃T >

γ

1− γ

]
+ E

[
e−δkT (γ − 1)γ−1S̃γ

T

γγ
; S̃T <

γ

1− γ

]

V̂ (α, 0)
K0

= ER

[
e−δkT S̃T ; S̃T >

γ

1− γ

]
−e−δkT PR

[
S̃T >

γ

1− γ

]
+ER

[
e−δkT (γ − 1)γ−1S̃γ

T

γγ
; S̃T <

γ

1− γ

]

V̂ (α, 0)
K0

= S̃0e
−δsT N(da(α))− e−δkT N(db(α)) +

(γ − 1)γ−1

γγ
S̃γ

0 e(δk(γ−1)−δSγ+0.5eσ2(α)γ(γ−1))T N(dc(α))
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with da(α), db(α) and dc(α) given by:

da(α) =
ln(S0(γ − 1)/K0γ) + (δk − δs + σ̂(α)2)T

σ̂(α)
√

T

db(α) = da(α)− σ̂(α)
√

T

dc(α) =
ln(K0γ/S0(γ − 1))− [(δk − δs)γ + σ̂2(α)γ(γ − 1)/2]T

γσ̂(α)
√

T

Multiplying the last expression by K0 and substracting the certain payment of αI we get our final

result:

V (α, 0) = S0e
−δsT N(da)−K0e

−δkT N(db)+(γ−1)γ−1Sγ
0 K1−γ

0 e(δk(γ−1)−δSγ+0.5bσ2(α)γ(γ−1))T N(dc)−αI

8.3 Proof of Proposition 4.1

Let us first calculate the function δMR(α)
δβ < 0. It is equal to:

δMR(α)
δβ

=
S0e

−δST κσm

√
TN ′(d1(α))α2β−1

(1 + κα2β)3/2
[(1+κα2β)(1+2β ln α)−κα2ββ ln α+d1(α)d2(α)κα2ββ ln α]

Hence, the sign of the derivative depends on the sign of the term inside the brackets. Let’s label this

term f(α). We can easily see that f(1) > 0 and that limα→0 f(α) = −∞. This implies that there exists

at least a one zero for the function in the interval (0, 1), an ᾰ(β) such that f(ᾰ(β)) = 0. Equivalently

ᾰ(β) solves the following equation:

ln(1/α)[2β + κβα2β(1 + d1d2)]
1 + κα2β

= 1

Uniqueness follows by showing that f ′(α) > 0 whenever f(α) = 0.

8.4 Main Comparative Statics

8.4.1 Sensitivity to κ keeping σm fixed

δMR(α)
δκ

=
S0e

−δsT
√

Tβσmα2β−1N ′(d1(α))[κα2β(1 + d1(α)d2(α)) + 2]
2(1 + κα2β)3/2

This derivative is positive if and only if: κα2β(1 + d1(α)d2(α)) + 2 > 0. Since d1(α)d2(α) is decreasing

in volatility and hence in α then κ(1+d1(1)d2(1))+2 > 0 suffices for this to hold for α ∈ [0, 1]. Unless

σm takes unusually high values δMR(α)/δκ > 0. By the envelope condition the value of the option is

nondecreasing in κ since δV (α, κ)/δκ > 0.
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8.4.2 Sensitivity to σm keeping σz fixed

δMR(α)
δσm

=
S0e

δST
√

Tσ2
Zβα2β−1N ′(d1(α))[d1(α)d2(α)− 1]

(σ2
M + σ2

Zα2β)3/2

which is negative unless, σ̂(α)2T + σ̂(α)4T 2/4 < (ln(S0/K0)+(δk−δs)T )2. This condition requires low

values for the total effective volatility. The value of the option, V ? is always nondecreasing in market

uncertainty since δV (α, σM )/δσM > 0.

8.4.3 Sensitivity to K0

δMR(α)
δK0

=
S0e

δST κβα2β−1d1(α)N ′(d1(α))
K0(1 + κα2β)

Marginal revenues are nondecreasing in K0 if d1(α) > 0 and are non increasing in K0 otherwise. This

condition holds if and only if ln(S0/K − 0) + (δk − δs)T > σ̂(α)2T/2, in other words, for an out of the

money option, more out of the money when the volatility is high.

The value of the option V ? is always decreasing in K0. This holds by the envelope condition and the

fact that δV (α, K0)/δK0 < 0.

8.4.4 Sensitivity to S0

δMR(α)
δS0

=
e−δST κβα2β−1N ′(d1(α))(σm

√
1 + κα2β

√
T − d1(α))√

1 + κα2β

Marginal revenues are nondecreasing in S0 if d1(α) < σM

√
1 + κα2β

√
T and are non increasing in S0

otherwise.

The value of the option V ? is always increasing in S0. This holds by the envelope condition and the

fact that δV (α, S0)/δS0 > 0.

8.4.5 Sensitivity to δk

δMR(α)
δδk

= −S0e
−δST κβα2β−1d1(α)N ′(d1(α))T

1 + κα2β

The effect is similar to the sensitivity to K0. Marginal revenues are nondecreasing in δk if d1(α) < 0

and are non increasing in K0 otherwise. By the same previous arguments the value of the option V ?

is always nondecreasing since δV (α, δk)/δδk > 0.
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8.4.6 Sensitivity to δs

δMR(α)
δδs

=
S0κβα2β−1

√
Te−δsT N ′(d1(α))[d1(α)

√
T − δsσm

√
1 + κα2β ]

1 + κα2β

The effect is similar to the sensitivity to S0. Marginal revenues are nondecreasing in δs if d1(α) >

δsσm

√
1 + κα2β/

√
T and are non increasing in δs otherwise. By the same previous arguments the value

of the option V ? is always non increasing in δs since δV (α, δs)/δδs < 0.
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